Russian Federation
Russian Federation
Russian Federation
Russian Federation
Purpose: Numerical modelling of the storm wave impact on the coastal protection structures and railway tracks in the areas of intensive coastal storm tides has been performed. The intensity of the hydrodynamic impact on structural elements and the indirect effect of man-made structures on coastal erosion have been evaluated. Methods: Computer simulation by SPH method. Results: A map of the sea-wave velocity and overpressure distribution for incoming and reflected waves for a coastline zone has been built. The study has shown the benefits of inserting coastal rail facilities in the natural landscape. Practical significance: A comparative analysis of the stated-above hydrodynamic impact on the standard and alternative railtrack substructure in the coastal area has been conducted.
Hydrodynamics of smoothed particles, retaining walls, railway structures, track substructure, trestle
1. Serebryakov G. B. Obzor metodov beregozaschity na Chernomorskom poberezh'e Rossii / G. B. Serebryakov, N. A. Grishin // Arhitektura Sochi. — URL: https://arch-sochi.ru/2012/10/ obzor-metodov-beregozashhityi-na-chernomorskom-poberezhe-rossi.
2. Ashpiz E. S. Zaschita zheleznodorozhnogo puti linii Tuapse - Adler ot opasnyh sklonovyh processov / E. S. Ashpiz, A. N. Savin, V. A. Yavna // Zheleznodorozhnyy transport: nauchno-teoreticheskiy tehniko-ekonomicheskiy zhurnal. — 2017. — № 7. — S. 52–57.
3. Ouyang Z. Two-Phase Smoothed Particle Hydrodynamics Modelling of Hydrodynamic- Aerodynamic and Wave-Structure Interaction / Z. Ouyang, B. C. Khoo // Energies 2022. — Apr 28. — Vol. 15(9). — P. 3251. — DOIhttps://doi.org/10.3390/en15093251.
4. Trimulyono A. Numerical simulation of water wave propagation using DualSPHysics / A. Trimulyono, B. R. Dhanureski, S. Samuel et al. // IOP Conference Series: Earth and Environmental Science. — 2024. — Vol. 1298. — Iss. 1. — Pp 1–9. — DOI:https://doi.org/10.1088/1755-1315/1298/1/012002.
5. Meringolo D. SPH numerical modeling of wave-perforated breakwater interaction / D. Meringolo, F. Aristodemo, P. Veltri // Coastal Engineering. — 2015. — Vol. 101. — Pp 48–68. — DOI:https://doi.org/10.1016/j.coastaleng.2015.04.004.
6. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree / H. Wendland // Advances in Computational Mathematics. — 1995. — Vol. 4(1). — Iss. 1. — Pp. 389–96. — DOI:https://doi.org/10.1007/BF02123482.
7. Macià F. Benefits of using a Wendland Kernel for free-surface flows / F. Macià, A. Colagrossi, M. Antuono et al. // 6th ERCOFTAC SPHERIC workshop on SPH applications, Hamburg, Germany, June, 08–10 2011. — URL: https://www.researchgate.net/publication/303637287_Benefits_of_ using_a_Wendland_kernel_for_free-surface_flows.
8. Madsen O. S. On the generation of long waves / Madsen O. S. // Journal of Geophysical Research. — 1971. — Vol. 76(36). — Pp. 8672–8683. — DOI:https://doi.org/10.1029/JC076i036p08672.
9. Trimulyono A. et al. Sensitivity analysis of SPH parameters for long-distance water wave propagation / A. Trimulyono et al. // IOP Conference Series: Earth and Environmental Science 1198. — 2023. — DOI:https://doi.org/10.1088/1755-1315/1198/1/012001.