SELECTION OF A TEST FOR THE TYPE OF INPUT DISTRIBUTION IN 5G NETWORK CHANNELS
Abstract and keywords
Abstract (English):
The relevance of the proposed study is determined by the fact that, in the context of the development of digital remote control systems for elements of the railway transport infrastructure based on 5G technology, the need for analyzing the transmission-reception channel and the operating principle of the energy detector has increased. The present paper proposes the test selection analysis for the type of input distribution in 5G channels. Purpose: to minimize the occurrence of collisions in communication channels that are the result of erroneous analysis of the input implementation. Methods: theoretical and empirical-analytical analysis of the efficiency of signal detection methods in case of intermittent transmissions. Results: the experiment was conducted with the objective of simulating random samples with a signal-to-noise ratio of no less than 10 dB in the channel. The probability of the correct decision on channel intermittency of no less than 0.7 obtained as a result of modelling confirmed the validity of choosing the Jarque–Bera test for analyzing channels with intermittent transmission. Conclusion and novelty: the author’s contribution to the issue under consideration is the development of a concept for conducting a preliminary analysis of the input implementation, with distribution indicators such as asymmetry and excess being taken into account. In the future, this will form the basis for constructing an adaptive energy detector that will operate according to the type of distribution of the processed implementation. Practical significance: the findings can be utilized to enhance the reliability and precision of energy detectors in wireless communication systems, particularly in scenarios where statistical data is limited and channel conditions are subject to change. It is evident that, given a priori information on signal distribution, the optimization of the detector setup process and the reduction of response time can be achieved.

Keywords:
NR-U technology, energy detector, Jarque–Bera test, broadband access, intermittent transmission channel
Text
Text (PDF): Read Download
References

1. Roenkov D. N., Plekhanov P. A. Mobilnye seti pokoleniya 5G: perspektivy primeneniya [Mobile Networks of the 5G Generation: Application Prospects], Avtomatika, svyaz, informatika [Automation, Communications, Informatics], 2020, No. 10, Pp. 2–7. DOI:https://doi.org/10.34649/AT.2020.10.10.001. (In Russian) EDN: https://elibrary.ru/RVXSWW

2. Vasilets A. Al., Vasilets A. An., Al-Mufti A., et al. Metod chetyrekhchastotnoy initsializatsii kanalov svyazi transportnogo domena setey 5G [The Four-Frequency Initialization Method for 5G Transport Domain Communication Channels], Nauchno-tekhnicheskiy vestnik Povolzhya [Scientific and Technical Volga Region Bulletin], 2023, No. 11, Pp. 339–342. (In Russian) EDN: https://elibrary.ru/QOXHGB

3. Karpov I. V. Besprovodnaya ekskursionnaya sistema s aktivnymi metkami na osnove standarta IEEE 802.15.4 [A Wireless Excursion System with Active Tags Based on IEEE 802.15.4 Standard], Innovatsionnye informatsionnye tekhnologii: materialy Vtoroy nauchno-prakticheskoy konferentsii [Innovative Information Technologies: Materials of the Second International Scientific and Practical Conference], Prague, Czech Republic, April 22–26, 2013. Vol. 4. Moscow, HSE Tikhonov Moscow Institute of Electronics and Mathematics, 2013, Pp. 86–90. (In Russian)

4. Hu F., Chen B., Zhu K. Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey, IEEE Access, 2018, Vol. 6, Pp. 15754–15776. DOI:https://doi.org/10.1109/ACCESS.2018.2802450.

5. Dvornikov S. V., Pshenichnicov A. V., Rusin A. A. Obobshchennaya funktsionalnaya model radiolinii s upravleniem ee chastotnym resursom [Generalized Functional Model of a Radio Link Control Its Frequency Resource], Voprosy Radioelektroniki, Seriya Tekhnika Televideniya, 2016, Iss. 3, Pp. 49–56. (In Russian) EDN: https://elibrary.ru/WKODPZ

6. Akhtar A. N., Arif F., Siddique A. M. Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G. In: Moghaddam S. S. (ed.) Cognitive Radio in 4G/5G Wireless Communication Systems. Rijeka, IntechOpen, 2018, Pp. 73–92. DOI:https://doi.org/10.5772/intechopen.80991.

7. Dvornikov S. V., Kryachko A. F., Pshenichnnikov A. V. Modelirovanie radiotekhnicheskikh sistem v konfliktnykh situatsiyakh kognitivnogo kharaktera [Research of Radio Engineering Systems in Conflict Situations of Cognitive Character], Volnovaya elektronika i infokommunikatsionnye sistemy (WECONF–2019): sbornik statey XXII Mezhdunarodnoy nauchnoy konferentsii [Wave Electronics and Infocommunication Systems (WECONF–2019): Proceedings of the XXII International Scientific Conference], Saint Petersburg, Russia, June 03–07, 2019. Part 2. Saint Petersburg, Saint Petersburg State University of Aerospace Instrumentation, 2019, Pp. 84–89. (In Russian) EDN: https://elibrary.ru/GLQVYA

8. Frolov A. A. Analiz sovremennykh standartov: McWILL, TD-SCDMA, WCDMA, IEEE 802.15.3a dlya primeneniya v SShP-sistemakh [Analysis of the Current Standards: McWILL, TD-SCDMA, WCDMA, IEEE 802.15.3a], T-Comm —Telekommunikatsii i Transport [T-Comm — Telecommunications and Transport], 2012, No. 9, Pp. 144–148. (In Russian) EDN: https://elibrary.ru/PXFXWL

9. Atapattu S., Tellambura C., Jiang H. Conventional Energy Detector. In: Atapattu S., Tellambura C., Jiang H. Energy Detection for Spectrum Sensing in Cognitive Radio. New York, Springer, 2014, Pp. 11–26. DOI:https://doi.org/10.1007/978-1-4939-0494-5_2. EDN: https://elibrary.ru/YFRYGL

10. Dvornikov S. V., Alekseeva T. E. Raspredelenie Alekseeva i ego primenenie v zadachakh chastotno-vremennoy obrabotki signalov [Alekseev Distribution and Its Application in Time-Frequency Signal Processing Problems], Informatsiya i kosmos [Information and Space], 2006, No. 3, Pp. 9–20. (In Russian) EDN: https://elibrary.ru/KXAJLB

11. Dvornikov S. V , Pshenichnicov A. V, Rusin A. A , Dvornikov A. S. Povyshenie pomekhoustoychivosti signalov KAM-16 s transformirovannymi sozvezdiyami [Increased Noise Immunity Signal 16-QAM Constellation with Transformed], Voprosy Radioelektroniki, Seriya Tekhnika Televideniya, 2014, Iss. 2, Pp. 51–56. (In Russian) EDN: https://elibrary.ru/TFPSSJ

12. Bokova Ye. A., Povetko V. N., Polev V. Yu. Modelirovanie mnogokanalnogo energeticheskogo obnaruzhitelya dlya DMR radiosistem [Simulation of a Multichannel Energy Detector for DMR Radio Systems], Teoriya i tekhnika radiosvyazi [Theory and Technology of Radio Communication], 2023, No. 2, Pp. 15–20. (In Russian) EDN: https://elibrary.ru/ETXDFB

13. Barela M. C., Marciano J. S. An Empirical Study on the Performance of a Spectrum Sensing Scheme for Cognitive Radio, Proceedings of the 17th International Symposium on Wireless Personal Multimedia Communications (WPMC), Sydney, Australia, September 07–10, 2014. Institute of Electrical and Electronics Engineers, 2015, Pp. 474–479. DOI:https://doi.org/10.1109/WPMC.2014.7014865.

14. Dikmese S., Sofotasios P. C., Ihalainen T., et al. Efficient Energy Detection Methods for Spectrum Sensing Under Non-Flat Spectral Characteristics, IEEE Journal on Selected Areas in Communications, 2015, Vol. 33, Iss. 5, Pp. 755–770. DOI:https://doi.org/10.1109/JSAC.2014.2361074. EDN: https://elibrary.ru/UOTJSJ

15. Düzenli T., Akay O. A New Method of Spectrum Sensing in Cognitive Radio for Dynamic and Randomly Modelled Primary Users, IETE Journal of Research, 2022, Vol. 68, Iss. 2, Pp. 967–965. DOI:https://doi.org/10.1080/03772063.2019.1628668.

16. Arjoune Y., Kaabouch N. A Comprehensive Survey on Spectrum Sensing in Cognitive Radio Networks: Recent Advances, New Challenges, and Future Research Directions, Sensors, 2019, Vol. 19, Iss. 1, Art. No. 126, 32 p. DOI:https://doi.org/10.3390/s19010126.

17. Dvornikov S. V., Osadchy A. I., Dvornikov S. S., Rodin D. V. Demodulyatsiya signalov na osnove obrabotki ikh modifitsirovannykh raspredeleniy [Demodulation Based on Processing the Modified Distributions], Kontrol. Diagnostika [Testing. Diagnostics], 2010, No. 10, Pp. 46–54. (In Russian) EDN: https://elibrary.ru/NBEXTJ

18. Aneja B., Sharma K., Rana A. Spectrum Sensing Techniques for a Cognitive Radio Network. In: Singh S. N., et al. (eds.) Advances in System Optimization and Control: Select Proceedings of ICAEDC 2017. Lecture Notes in Electrical Engineering, Vol. 509. Singapore, Springer Singapore, 2019, Pp. 133–144. DOI:https://doi.org/10.1007/978-981-13-0665-5_11.

19. Lemons D. S. An Introduction to Stochastic Processes in Physics. Baltimore (MD), The Johns Hopkins University Press, 2002, 128 p.

20. Dvornikov S. V., Dvornikov S. S., Manaenko S. S., Pshenichnicov A. V. Spektralno-effektivnye signaly s nepreryvnoy fazoy [Spectral-Efficient Signal with the Continuous Phase], Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh State Technical University], 2016, Vol. 12, No. 2, Pp. 87–93. (In Russian) EDN: https://elibrary.ru/VSUWCB

21. Ameijeiras-Alonso J., Crujeiras R. M., Rodríguez-Casal A. Mode Testing, Critical Bandwidth and Excess Mass, Test, 2019, Vol. 28, Iss. 3, Pp. 900–919. DOI:https://doi.org/10.1007/s11749-018-0611-5. EDN: https://elibrary.ru/WZVXSK

22. Subekti A., Sugihartono, Syambas N. R., Suksmono A. B. A HOS-Based Blind Spectrum Sensing in Noise Uncertainty, Journal of ICT Research and Applications, 2015, Vol. 9, No. 1, Pp. 20–38. DOI:https://doi.org/10.5614/itbj.ict.res.appl.2015.9.1.2.

23. Dvornikov S. V., Dvornikov S. S., Ivanov R. V., et al. Zashchita ot strukturnykh pomekh radiokanalov s chastotnoy manipulyatsiey [Protection of Structural Noise Radio Channel Frequency Shift Keying], Informatsionnye tekhnologii [Information Technologies], 2017, Vol. 23, No. 3, Pp. 193–198. (In Russian) EDN: https://elibrary.ru/YHCWCR

24. Lenshin A. V., Tikhomirov N. M., Shatalov E. V. Opredelenie spektra shumov pomekh drobnosti v nepreryvnoy nelineynoy modeli sistemy fazovoy avtopodstroyki [Determination of Fractional Interference Noise Spectrum in Continuous Nonlinear Model of Phase-Locking System], Telekommunikatsii [Telecommunications], 2017, No. 12, Pp. 2–6. (In Russian) EDN: https://elibrary.ru/ZWUGKB

25. Dvornikov S. V., Dvornikov S. S., Pshenichnikov A. V. Apparat analiza chastotnogo resursa dlya rezhima psevdosluchaynoy perestroyki rabochey chastoty [Analysis of Frequency Resource for FHSS Mode], Informatsionno-upravlyayushchie sistemy [Information and Control Systems], 2019, No. 4 (101), Pp. 62–68. DOI:https://doi.org/10.31799/1684-8853-2019-4-62-68 (In Russian). EDN: https://elibrary.ru/VUYYFO

26. de Carvalho F. B. S., Rocha J. S., Lopes W. T. A., Alencar M. S. A Spectrum Sensing Algorithm Based on Statistic Tests for Cognitive Networks Subject to Fading, Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, September 01–05, 2014. Institute of Electrical and Electronics Engineers, 2014. Pp. 850–854.

27. Dvornikov S. V., Dvornikov S. S., Zheglov K. D. Proaktivnyy kontrol prigodnosti radiokanalov v rezhime PPRCh [Proactive Suitability Control of Radio Channels in IFB Mode], T-Comm: Telekommunikatsii i Transport [T-Comm: Telecommunications and Transport], 2022, Vol. 16, No. 11, Pp. 15–20. DOI:https://doi.org/10.36724/2072-8735-2022-16-11-15-20. (In Russian) EDN: https://elibrary.ru/YLWCFH

28. Vasilyeva D. V., Dvornikov S. S., Tolstukha Yu. E., et al. Formirovanie vektorov priznakov dlya sistem videonablyudeniya [Formation of Feature Vectors for Video Surveillance Systems], Voprosy Radioelektroniki, Seriya Tekhnika Televideniya, 2023, No. 4, Pp. 62–68. (In Russian) EDN: https://elibrary.ru/NZSBEJ

Login or Create
* Forgot password?