student
Moscow, Moscow, Russian Federation
student
Almetyevsk, Kazan, Russian Federation
Moscow, Moscow, Russian Federation
UDC 621.3
UDC 004.032.26
This study focuses on the development of a model based on the YOLOv8x neural network for the automated detection of defects in printed circuit boards (PCBs). Purpose: to train a neural network capable of effectively detecting and classifying various types of PCB defects. Methods: a deep learning method based on the YOLOv8x architecture, designed for object detection tasks. An accuracy and loss metrics analysis was conducted to assess the model’s effectiveness. Results: the trained model demonstrates high accuracy in classifying defects such as missing holes, shorts, and spurious copper, achieving an accuracy of 1.0. The “open circuits” and “copper spurs” classes also yield satisfactory results. However, the “mouse bites” class requires further improvement. Practical significance: the potential application of the developed model for automating quality control processes in PCBs could significantly enhance the reliability of electronic devices and reduce the potential failures in critical systems.
printed circuit board, defects, neural network classification, YOLOv8x neural network model
1. Danilova E. A. Klassifikatsiya defektov pechatnykh plat [Classification of printed circuit board defects], Trudy Mezhdunarodnogo simpoziuma “Nadezhnost i kachestvo” [Proceedings of the International Symposium “Reliability and Quality”], Penza, Russia, May 27 — June 03, 2013. Vol. 1. Penza, Penza State University, 2013, Pp. 325–328. (In Russian)
2. Danilova E. A., Kochegarov I. I., Trusov V. A. Modeli tekhnologicheskikh defektov provodyashchego risunka pechatnykh plat [Models of Technological Defects of Conductive Patterns of Printed Circuit Boards], Nadezhnost i kachestvo slozhnykh sistem [Reliability and Quality of Complex Systems], 2017, No. 2 (18), Pp. 68–76. DOI:https://doi.org/10.21685/2307-4205-2017-2-10. (In Russian) EDN: https://elibrary.ru/YPTJLV
3. Skladnova M. S. Metody kontrolya pechatnykh plat [PCB Control Methods], Colloquium-journal, 2019, No. 25-2 (49), Pp. 95–97. DOI:https://doi.org/10.24411/2520-6990-2019-10882. (In Russian) EDN: https://elibrary.ru/TZVWYP
4. Ksenofontov V. V. Neyronnye seti [Neural networks], Problemy nauki, 2020, No. 11 (59), Pp. 28–29. (In Russian) EDN: https://elibrary.ru/DTVJNS
5. Smith R. G., Eckroth J. Building AI Applications: Yesterday, Today, and Tomorrow, AI Magazine, 2017, Vol. 38, No. 1, Pp. 6–22. DOI:https://doi.org/10.1609/aimag.v38i1.2709.
6. Yağcı B. E., Demirsoy G., Akpolat A. N. General Overview of Artificial Neural Network Applications in Renewable Energy Systems, Turkish Journal of Electromechanics and Energy, 2024, Vol. 9, No. 3, Pp. 95–107.
7. Alekseeva N. S. Raspoznavanie lits po fotografii s pomoshchyu neyronnykh setey [Face Recognition from a Photo Using Neural Networks], Mezhdunarodnyy studencheskiy nauchnyy vestnik, 2021, No. 1, 5 p. Available at: http://eduherald.ru/ru/article/view?id=20406 (accessed: January 17, 2025). (In Russian) EDN: https://elibrary.ru/PHVIOO
8. Sharipova D. D. Neyronnaya set ImageAI: raspoznavanie obektov [ImageAI Neural Network: Object Recognition], Informatsionnye tekhnologii. Problemy i resheniya [Information Technology], 2020, No. 2 (11), Pp. 140–144. (In Russian) EDN: https://elibrary.ru/MQPHIN
9. Bondarenko V. I., Nestrugina E. S. Sistema raspoznavaniya lits prestupnikov s pomoshchyu kamer videonablyudeniya [Facial recognition system for criminals using CCTV cameras], Donetskie chteniya 2022: obrazovanie, nauka, innovatsii, kultura i vyzovy sovremennosti: materialy VII Mezhdunarodnoy nauchnoy konferentsii [Donetsk Readings 2022: Education, Science, Innovation, Culture and Challenges of Our Time: Proceedings of the VII International Scientific Conference], Donetsk, October 27–28, 2022. Vol. 2. Donetsk: Donetsk National University, 2022, Pp. 236–237. (In Russian) EDN: https://elibrary.ru/RZOVEF
10. Bolikov S. S. Mashinnoe zrenie i neyronnye seti [Machine vision and neural networks], Konkurentosposobnost territoriy: materialy XX Vserossiyskogo ekonomicheskogo foruma molodykh uchenykh i studentov [Competitiveness of territories: Proceedings of the XX All-Russian Economic Forum of Young Scientists and Students], Yekaterinburg, Russia, April 27–28, 2017. Part 8. Yekaterinburg, Ural State University of Economics, 2017, Pp. 21–22. (In Russian) EDN: https://elibrary.ru/UPJUDM
11. Vaishya R., Javaid M., Khan I. H., Haleem A. Artificial Intelligence (AI) Applications for COVID-19 Pandemic, Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, Vol. 14, Iss. 4, Pp. 337–339. DOI:https://doi.org/10.1016/j.dsx.2020.04.012. EDN: https://elibrary.ru/EUGDAX
12. Mohamed Y. A., Khanan A., Bashir M., et al. The Impact of Artificial Intelligence on Language Translation: A Review, IEEE Access, 2024, Vol. 12, Pp. 25553-25579. DOI:https://doi.org/10.1109/ACCESS.2024.3366802. EDN: https://elibrary.ru/RSIKJU
13. Muratova U. D. Izuchenie neyronnykh setey dlya chat-botov [Study of Neural Networks for Chatbots], Sbornik trudov IX Kongressa molodykh uchenykh [Proceedings of the IX Congress of Young Scientists]. Saint Petersburg, Russia, April 15–18, 2020. Vol. 1. Saint Petersburg, ITMO University, 2021, Pp. 92–95. (In Russian) EDN: https://elibrary.ru/LFVHWN
14. Kravchenko D. Yu., Kravchenko Yu. A., Mansur A., et al. Algoritm optimizatsii izvlecheniya klyuchevykh slov na osnove primeneniya lingvisticheskogo parsera [Algorithm for Optimization of Keyword Extraction Based on the Application of a Linguistic Parser], Informatika i avtomatizatsiya [Informatics and Automation], 2024, Vol. 23, No. 2, Pp. 467–494. DOI:https://doi.org/10.15622/ia.23.2.6. (In Russian) EDN: https://elibrary.ru/CUIVBO
15. Li X., Sigov A., Ratkin L., et al. Artificial Intelligence Applications in Finance: A Survey, Journal of Management Analytics, 2023, Vol. 10, Iss. 4, Pp. 676–692. DOI:https://doi.org/10.1080/23270012.2023.2244503. EDN: https://elibrary.ru/FQRJVC
16. Joshi N., Dave T. Improved Accuracy for Heart Disease Diagnosis Using Machine Learning Techniques, Journal of Informatics and Web Engineering, 2025, Vol. 4, No. 1, Pp. 42–52. DOI:https://doi.org/10.33093/jiwe.2025.4.1.4. EDN: https://elibrary.ru/UJFIBH
17. Datilo P. M., Ismail Z., Dare J. A Review of Epidemic Forecasting Using Artificial Neural Networks, Epidemiology and Health System Journal, 2019, Vol. 6, Iss. 3, Pp. 132–143. DOI:https://doi.org/10.15171/ijer.2019.24.
18. Atan O., Jordon J., van der Schaar M. Deep-Treat: Learning Optimal Personalized Treatments from Observational Data Using Neural Networks, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, February 02–07, 2018. Palo Alto (CA), AAAI Press, 2018, Pp. 2071–2078. DOI:https://doi.org/10.1609/aaai.v32i1.11841.
19. Li C., Wang Y., Bai H., et al. Deep Neural Network Provides Personalized Treatment Recommendations for de novo Metastatic Breast Cancer Patients, Journal of Cancer, 2024, Vol. 15, Iss. 20, Pp. 6668–6685. DOI:https://doi.org/10.7150/jca.101293. EDN: https://elibrary.ru/KGJHEQ
20. Widayani A., Putra A. M., Maghriebi A. R., et al. Review of Application YOLOv8 in Medical Imaging, Indonesian Applied Physics Letters, 2024, Vol. 5, No. 1, Pp. 23–33. DOI:https://doi.org/10.20473/iapl.v5i1.57001. EDN: https://elibrary.ru/MXLDCU
21. Mumali F. Artificial Neural Network-Based Decision Support Systems in Manufacturing Processes: A Systematic Literature Review, Computers and Industrial Engineering, 2022, Vol. 165, Art. No. 107964, 20 p. DOI:https://doi.org/10.1016/j. cie.2022.107964. DOI: https://doi.org/10.1016/j.cie.2022.107964; EDN: https://elibrary.ru/PDPGSQ
22. Ribeiro J., Lima R., Eckhardt T., Paiva S. Robotic Process Automation and Artificial Intelligence in Industry 4.0 — A Literature Review, Procedia Computer Science, 2021, Vol. 181, Pp. 51–58. DOI:https://doi.org/10.1016/j.procs.2021.01.104. EDN: https://elibrary.ru/DGYCSD
23. Edelev D. A., Blagoveshchenskaya M. M., Blagoveshchenskiy I. G. Ispolzovanie neyronnykh setey kak faktora povysheniya kachestva i bezopasnosti proizvodstva pishchevykh produktov pri reshenii zadach avtomatizatsii [Using neural networks as a factor in improving the quality and safety of food production in solving automation problems], Avtomatizatsiya tekhnologicheskikh i biznes-protsessov [Automation of Technological and Business Processes], 2015, Vol. 7, No. 1 (21), Pp. 7–10. DOI:https://doi.org/10.15673/2312-3125.21/2015.42856. (In Russian) EDN: https://elibrary.ru/VRNCSD
24. Akhatova A. PCB Defects, Kaggle. Available at: http://www.kaggle.com/datasets/akhatova/pcb-defects (accessed: January 17, 2025).
25. Cheremisinova O. N., Rostovtsev V. S. Povyshenie kachestva raspoznavaniya izobrazheniy podborom parametrov svertochnoy neyronnoy seti [Improving the quality of image recognition by selecting convolutional neural network parameters], Integratsiya nauki v sovremennom mire: sbornik nauchnykh rabot 52-y Mezhdunarodnoy nauchnoy konferentsii Evraziyskogo Nauchnogo Obedineniya [Integration of Science in the Modern World: Scientific Articles Collection of the 52nd International Scientific Conference of Eurasian Scientific Association], Moscow, Russia, June 2019. Moscow, Eurasian Scientific Association, 2019, Pp. 114–118. (In Russian)
26. Sirisha U., Praveen S. P., Srinivasu P. N., et al. Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection, International Journal of Computational Intelligence Systems, 2023, Vol. 16, Art. No. 126, 29 p. DOI:https://doi.org/10.1007/s44196-023-00302-w. EDN: https://elibrary.ru/UYNHMY
27. Ultralytics YOLO. Available at: http://www.ultralytics.com/yolo (accessed: January 17, 2025).
28. Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 27–30, 2016. Institute of Electrical and Electronics Engineers, 2016, Pp. 779–788. DOI:https://doi.org/10.1109/CVPR.2016.91.
29. Google Colaboratory. Available at: http://colab.google (accessed: January 17, 2025).
30. F1-Score, Ultralytics. URL: http://www.ultralytics.com/glossary/f1-score (accessed: January 17, 2025).