graduate student from 01.01.2020 until now
Russian Federation
Russian Federation
UDC 519.688
A study presents a comparative analysis of the extended Cox model with modern survival analysis methods. Purpose: to evaluate the predictive abilities of the extended Cox model in comparison with the current survival analysis models and techniques. To achieve this goal, machine learning methods (survival random forest, gradient boosting, support vector machines) and classical statistical approaches (Weibull, log-logistic, and log-normal models) were used. Methods: analyzing three datasets, that is prostate cancer patients, data on their recurrent admissions, and breast cancer patients. Results: To demonstrate that the extended Cox model outperforms or is comparable in accuracy to modern machine learning methods while maintaining high interpretability. Practical significance: the applicability of the extended Cox model in medicine, social sciences, and other fields where both prediction accuracy and understanding of the factors affecting the risk of an event are crucial. The scientific novelty of this study lies in conducting a first comparative analysis of the extended Cox model with other survival analysis methods opening new opportunities for improving and adapting the model in future research. The study will be of great importance for the development of survival analysis methods and their application in practical tasks contributing to increased prediction accuracy and improved interpretability of results.
survival analysis, Cox model, metaheuristic algorithms, ant colony algorithm, optimization
1. Letchikov A. V., Matveev R. Yu., Shirobokova M. A. Reshenie problemy tsenzurirovannykh dannykh pri modelirovanii otsenki individualnogo kreditnogo riska [Solving the Problem of Censored Data in Modeling the Individual Credit Risk Estimation], Vestnik Udmurtskogo universiteta. Seriya “Ekonomika i parvo” [The Bulletin of Udmurt University. Series Economics and Law], 2019, Vol. 29, Iss. 1, Pp. 34–41. (In Russian) EDN: https://elibrary.ru/VULHJQ
2. Archetti A., Lomurno E., Lattari F., et al. Heterogeneous Datasets for Federated Survival Analysis Simulation, ICPE ‘23 Companion: Companion of the ACM/SPEC International Conference on Performance Engineering (Coimbra, Portugal, April 15–19, 2023). New York (NY), Association for Computing Machinery, 2023, Pp. 173–180. DOI:https://doi.org/10.1145/3578245.3584935.
3. Mikulik I. I., Zharinov G. M., Kneev A. Yu. Algorithm for Constructing the Hazard Function of the Extended Cox Model and Its Application to the Prostate Cancer Patient Database, Advanced Engineering Research (Rostov-on-Don), 2024, Vol. 24, No. 4, Pp. 413–423. DOI:https://doi.org/10.23947/2687-1653-2024-24-4-413-423. EDN: https://elibrary.ru/LNZDKF
4. Wang P., Li Y., Reddy C. K. Machine Learning for Survival Analysis: A Survey, ACM Computing Surveys, 2019, Vol. 51, Iss. 6, Art. No. 110, 36 p. DOI:https://doi.org/10.1145/3214306. EDN: https://elibrary.ru/ECVOGV
5. Ishak K. J., Kreif N., Benedict A., Muszbek N. Overview of Parametric Survival Analysis for Health-Economic Applications, PharmacoEconomics, 2013, Vol. 31, Iss. 8, Pp. 663–675. DOI:https://doi.org/10.1007/s40273-013-0064-3. EDN: https://elibrary.ru/HHMKFP
6. Zhu S., Campanella O., Chen G. Estimation of Parameters in the Weibull Model from Microbial Survival Data Obtained Under Constant Conditions with Come-up Times, Journal of Food Engineering, 2021, Vol. 292, Art. No. 110364, 10 p. DOI:https://doi.org/10.1016/j.jfoodeng.2020.110364. EDN: https://elibrary.ru/KMKSWS
7. Borges P. Estimating the Turning Point of the Log-Logistic Hazard Function in the Presence of Long-Term Survivors with an Application for Uterine Cervical Cancer Data, Journal of Applied Statistics, 2021, Vol. 48, Iss. 2, Pp. 203–213. DOI:https://doi.org/10.1080/02664763.2020.1720627. EDN: https://elibrary.ru/VIZNVC
8. Gray J., Sullivan T., Latimer N. R., et al. Extrapolation of Survival Curves Using Standard Parametric Models and Flexible Parametric Spline Models: Comparisons in Large Registry Cohorts with Advanced Cancer, Medical Decision Making, 2021, Vol. 41, Iss. 2, Pp. 179–193. DOI:https://doi.org/10.1177/0272989X20978958. EDN: https://elibrary.ru/LESQLP
9. Ibrahim N. A., Kudus A., Daud I., Abu Bakar M. R. Decision Tree for Competing Risks Survival Probability in Breast Cancer Study, International Journal of Biological and Medical Sciences, 2008, Vol. 3, Iss. 1, Pp. 25–29.
10. Van Belle V., Pelckmans K., Suykens J. A. K., Van Huffel S. Support Vector Machines for Survival Analysis, Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2007), Plymouth, United Kingdom, July 25–27, 2007). 8 p.
11. Shivaswamy P. K., Chu W., Jansche M. A Support Vector Approach to Censored Targets, Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE, USA, October 28–31, 2007. Institute of Electrical and Electronics Engineers, 2007, Pp. 655–660. DOI:https://doi.org/10.1109/ICDM.2007.93.
12. Yang A., Liu J., Li M., et al. Integrating Bioinformatics and Machine Learning Methods to Analyze Diagnostic Biomarkers for HBV-induced Hepatocellular Carcinoma, Diagnostic Pathology, 2024, Vol. 19, Iss. 1, Art. No. 105, 10 p. DOI:https://doi.org/10.1186/s13000-024-01528-8. EDN: https://elibrary.ru/KKPWDQ
13. Wiegrebe S., Kopper P., Sonabend R., et al. Deep Learning for Survival Analysis: A Review, Artificial Intelligence Review, 2024, Vol. 57, Iss. 3, Art. No. 65, 34 p. DOI:https://doi.org/10.1007/s10462-023-10681-3. EDN: https://elibrary.ru/OKQEDA
14. Kovalev M. S., Utkin L. V. A Robust Algorithm for Explaining Unreliable Machine Learning Survival Models Using the Kolmogorov — Smirnov Bounds, Neural Networks, 2020, Vol. 132, Pp. 1–18. DOI:https://doi.org/10.1016/j.neunet.2020.08.007. EDN: https://elibrary.ru/BIPVYR
15. Archetti A., Ieva F., Matteucci M. Scaling Survival Analysis in Healthcare with Federated Survival Forests: A Comparative Study on Heart Failure and Breast Cancer Genomics, Future Generation Computer Systems, 2023, Vol. 149, Pp. 343–358. DOI:https://doi.org/10.1016/j.future.2023.07.036. EDN: https://elibrary.ru/PIUOVF
16. Powell J. L. Estimation of Semiparametric Models. In: Engle R. F., McFadden D. L. (eds.) Handbook of Econometrics. Volume IV. Amsterdam, North-Holland Publishing, 1994, Pp. 2443–2521. DOI:https://doi.org/10.1016/S1573-4412(05)80010-8.
17. McLernon D. J., Giardiello D., Van Calster B. Assessing Performance and Clinical Usefulness in Prediction Models with Survival Outcomes: Practical Guidance for Cox Proportional Hazards Models, Annals of Internal Medicine, 2023, Vol. 176, No. 1, Pp. 105–114. DOI:https://doi.org/10.7326/M22-0844. EDN: https://elibrary.ru/MZUNMC
18. Tao X., Wang M., Ji Y. The Application of Graph-Structured Cox Model in Financial Risk Early Warning of Companies, Sustainability, 2023, Vol. 15, Iss. 14, Art. No. 10802, 16 p. DOI:https://doi.org/10.3390/su151410802. EDN: https://elibrary.ru/HJMJMS
19. Gomez-Gonzalez J. E., Uribe J. M., Valencia O. M. Does Economic Complexity Reduce the Probability of a Fiscal Crisis? World Development, 2023, Vol. 168, Art. No. 106250, 17 p. DOI:https://doi.org/10.1016/j.worlddev.2023.106250. EDN: https://elibrary.ru/NXWULM
20. Avelino-Silva V. I., Thomazella M. V., Marmorato M. P., et al. Viral Kinetics in Sylvatic Yellow Fever Cases, The Journal of Infectious Diseases, 2023, Vol. 227, Iss. 9, Pp. 1097–1103. DOI:https://doi.org/10.1093/infdis/jiac435. EDN: https://elibrary.ru/ROSKZG
21. Ziadi C., Sánchez J. P., Sánchez M., et al. Survival Analysis of Productive Life in Florida Dairy Goats Using a Cox Proportional Hazards Model, Journal of Animal Breeding and Genetics, 2023, Vol. 140, Iss. 4, Pp. 431–439. DOI:https://doi.org/10.1111/jbg.12769. EDN: https://elibrary.ru/QFGRDQ
22. Del Brutto O. H., Mera R. M., Rumbea D. A., et al. High Social Risk and Mortality. A Prospective Study in Community-Dwelling Older Adults Living in a Rural Ecuadorian Village, Preventive Medicine Reports, 2023, Vol. 32, Art. No. 102146, 4 p. DOI:https://doi.org/10.1016/j.pmedr.2023.102146. EDN: https://elibrary.ru/IPKDHN
23. Papathanasiou D., Demertzis K., Tziritas N. Machine Failure Prediction Using Survival Analysis, Future Internet, 2023, Vol. 15, Iss. 5, Art. No. 153, 26 p. DOI:https://doi.org/10.3390/fi15050153. EDN: https://elibrary.ru/YIBRRL
24. Harrell Jr. F. E., Califf R. M., Pryor D. B., et al. Evaluating the Yield of Medical Tests, JAMA: The Journal of the American Medical Association, 1982, Vol. 247, No. 18, Pp. 2543–2546. DOI:https://doi.org/10.1001/jama.1982.03320430047030.
25. Alabdallah A., Ohlsson M., Pashami S., Rögnvaldsson T. The Concordance Index Decomposition: A Measure for a Deeper Understanding of Survival Prediction Models, Artificial Intelligence in Medicine, 2024, Vol. 148, Art. No. 102781, 10 p. DOI:https://doi.org/10.1016/j.artmed.2024.102781. EDN: https://elibrary.ru/ATBZPL
26. Hartman N., Kim S., He K., Kalbfleisch J. D. Pitfalls of the Concordance Index for Survival Outcomes, Statistics in Medicine, 2023, Vol. 42, Iss. 13, Pp. 2179–2190. DOI:https://doi.org/10.1002/sim.9717. EDN: https://elibrary.ru/LIORVN
27. Rumyantseva E. V., Furmanov K. K. Using Out-of-Sample Cox — Snell Residuals in Time-to-Event Forecasting, Business Informatics, 2021, Vol. 15, No. 1, Pp. 7–18. DOI:https://doi.org/10.17323/2587-814X.2021.1.7.18. EDN: https://elibrary.ru/NHHAHF
28. Longato E., Vettoretti M., Di Camillo B. A Practical Perspective on the Concordance Index for the Evaluation and Selection of Prognostic Time-to-Event Models, Journal of Biomedical Informatics, 2020, Vol. 108, Art. No. 103496, 9 p. DOI:https://doi.org/10.1016/j.jbi.2020.103496. EDN: https://elibrary.ru/DPLMAZ
29. Pencina M. J., D’Agostino R. B. Overall C as a Measure of Discrimination in Survival Analysis: Model Specific Population Value and Confidence Interval Estimation, Statistics in Medicine, 2004, Vol. 23, Iss. 13, Pp. 2109–2123. DOI:https://doi.org/10.1002/sim.1802.
30. Yin Q., Chen W., Zhang C., Wei Z. A Convolutional Neural Network Model for Survival Prediction Based on Prognosis-Related Cascaded Wx Feature Selection, Laboratory Investigation, 2022, Vol. 102, Iss. 10, Pp. 1064–1074. DOI:https://doi.org/10.1038/s41374-022-00801-y. EDN: https://elibrary.ru/JTJDCF
31. Zharinov G. M. Baza dannykh bolnykh rakom predstatelnoy zhelezy [Prostate cancer patient database]. Certificate of State registration of the database RU No. 2016620331, published at April 20, 2016. (In Russian)
32. Rossi P. H., Berk R. A., Lenihan K. J. Money, Work, and Crime: Experimental Evidence. New York, Academic Press, 1980. 260 p.
33. Teng J. SEER Breast Cancer Data, IEEE Dataport. Last update January 18, 2019. DOI:https://doi.org/10.21227/a9qy-ph35.