ORTHOGONAL BASIS SYNTHESIS AT A FINITE TIME INTERVAL FOR DIGITAL SIGNAL PROCESSING WITH LIMITED SPECTRUM
Abstract and keywords
Abstract (English):
The problem of synthesizing an orthogonal basis for transmitting information over narrow-band communication channels in the presence of noise is considered. Purpose: to develop an orthogonal-basis finitetime synthesis method for efficient digital processing of limited-spectrum signals, with the aim of increasing the capacity of digital communication channels. To achieve this goal, the matrix method of signal synthesis and analysis, the MATLAB environment and other innovative approaches were used. Methods: theoretical analysis and computer modelling. Results: the high potential of using the finite-time orthogonal basis for synthesizing and analyzing limited-spectrum signals has been confirmed. Practical significance: improved quality of signal transmission, especially in conditions of limited bandwidth of communication channels contributing to the creation of more efficient and reliable communication systems. Discussion: makes recommendations for further improvement of the proposed basis and highlights issues requiring further research and development. This study is important for the development of railway telecommunication technologies in rail transport.

Keywords:
function basis decomposition, orthogonal basis, approximation, synthesis and analysis of signals, digital signal processing
Text
Text (PDF): Read Download
References

1. 1. Egorov V. V., Khodakovsky V. A. Sintez LChM signala v polose TCh s uluchshennymi svoystvami po AKF i pikfaktoru [Synthesis of a LFM Signal in the TF Band with Improved Properties by ACF and Peak Factor], Sovremennye tekhnologii obrabotki signalov (STOS-2023): Doklady 4-oy Vserossiyskoy konferentsii [Modern Technologies of Signal Processing (MTSP-2023): Proceeding of the Fourth All-Russian Conference], Moscow, Russia, December 12–13, 2023. Moscow, A. S. Popov Russian Science and Technical Society, 2023. Pp. 54–59. (In Russian) EDN: https://elibrary.ru/LLVZRK

2. Egorov V. V., Lobov S. A., Khodakovsky V. A. Sintez posledovatelnostey s idealnymi avtokorrelyatsionnymi svoystvami [Synthesis of Sequences with ideal Autocorrelation Properties], Avtomatika na transporte [Transport Automation Research], 2022, Vol. 8, No. 11, Pp. 78–89. DOI:https://doi.org/10.20295/2412-9186-2022-8-1-78-89. (In Russian) EDN: https://elibrary.ru/PSTCFH

3. Bulavsky P. E., Vasilenko M. N., Khodakovsky V. A. Intellektualnoe tsifrovoe upravlenie tonalnymi relsovymi tsepyami [Intelligent Digital Control Tonal Rail Chains], Avtomatika, svyaz, informatika [Automation, Communication, Informatics], 2022, No. 3, Pp. 2–6. DOI:https://doi.org/10.34649/AT.2022.3.3.001. (In Russian) EDN: https://elibrary.ru/UUHIUT

4. Grishentsev A. Yu. Synthesis Method for Alphabets of Orthogonal Signaling Broadband Communications, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, Vol. 18, No. 6, Pp. 1074–1083. DOI:https://doi.org/10.17586/2226-1494-2018-18-6-1074-1083. (In Russian) EDN: https://elibrary.ru/YQZIIH

5. Khodakovskii V. A., Degtiarev V. G., Gerasimenko P. V., Mikoni S. V. Sintez signalov s optimalnymi po urovnyu bokovykh lepestkov avtokorrelyatsionnymi svoystvami [Design of Signals with Autocorrelated Qualities That Have Optimised Side-Lobe Level], Izvestiya Peterburgskogo universiteta putey soobshcheniya [Proceedings of Petersburg Transport University], 2018, Vol. 15, Iss. 4, Pp. 629–636. DOI:https://doi.org/10.20295/1815-588X-2018-4-629-636. (In Russian) EDN: https://elibrary.ru/MCDYTD

6. Khodakovskiy V. A., Degtyarev V. G. O teoreme otschetov i ee primenenii dlya sinteza i analiza signalov s ogranichennym spektrom [On Sampling Theorem and Its Application for the Purposes of Synthesis and Analysis of Band-Limited Signals], Izvestiya Peterburgskogo universiteta putey soobshcheniya [Proceedings of Petersburg Transport University], 2017, Vol. 14, Iss. 3, Pp. 562–573. (In Russian) EDN: https://elibrary.ru/ZITFLL

7. Chonavel T. Orthogonal Signals with Jointly Balanced Spectra: Application to CDMA Transmissions, EURASIP Journal on Wireless Communications and Networking, 2011, Art. No. 176, 19 p. DOI:https://doi.org/10.1186/1687-1499-2011-176.

8. Petrov D. A. Sintez khorosho-lokalizovannykh konechnomernykh bazisov Veylya-Geyzenberga i ikh primenenie dlya postroeniya vysokoeffektivnykh algoritmov obrabotki signalov [Synthesis of well-localized finite-dimensional Weyl-Heisenberg bases and their application to constructing highly efficient signal processing algorithms]: Abstract of the diss. on competition of a scientific degree PhD (Physics and Math.). Moscow, Lomonosov Moscow State University, 2010, 18 p. (In Russian) EDN: https://elibrary.ru/QGYEIL

9. Volchkov V. P., Petrov D. A. Optimizatsiya ortogonalnogo bazisa Veylya-Geyzenberga dlya tsifrovykh sistem svyazi, ispolzuyushchikh printsip OFDM/OQAM peredachi [Orthogonal Weyl-Heisenberg Basis Optimisation for Digital Communication Systems Based on OFDM/OQAM], Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Istoriya. Politologiya. Ekonomika. Informatika [Belgorod State University Scientific Bulletin. History. Political Science. Economics. Information Technologies], 2009, No. 1 (56), Iss. 9/1, Pp. 104–112. (In Russian)

10. Volchkov V. P., Petrov D. A. Orthogonal Well-Localized Weyl-Heisenberg Basis Construction and Optimization for Multicarrier Digital Communication Systems, Proceedings of the 2009 International Conference on Ultra Modern Telecommunications & Workshops (ICUMT 2009), Saint Petersburg, Russia, October 12–14, 2009. Institute of Electrical and Electronics Engineers, 2009. 4 p. DOI:https://doi.org/10.1109/ICUMT.2009.5345586.

11. Volchkov V. P. Signalnye bazisy s khoroshey chastotno-vremennoy lokalizatsiey [Signal bases with good timefrequency localization], Electrosvyaz Magazine, 2007, No. 2, Pp. 21–25. (In Russian) EDN: https://elibrary.ru/HZDRED

12. Proakis J. G. Tsifrovaya svyaz [Digital Communications]. Moscow, Radio i Svyaz Publ., 2000, 800 p. (In Russian)

13. Mallat S. G. A Wavelet Tour of Signal Processing: Second Edition. San Diego (CA), Academic Press, 1999, 661 p. DOI: https://doi.org/10.1016/B978-012466606-1/50008-8

14. Haas R., Belfiore J.-C. A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission, Wireless Personal Communications, 1997, Vol. 5, Iss. 1, Pp. 1–18. DOI:https://doi.org/10.1023/A:1008859809455. EDN: https://elibrary.ru/AJLWEN

15. Muschallik C. Improving an OFDM Reception Using an Adaptive Nyquist Windowing, IEEE Transactions on Consumer Electronics, 1996, Vol. 42, Iss. 3, Pp. 259–269. DOI:https://doi.org/10.1109/30.536046.

16. Petukhov A. P. Periodicheskie diskretnye vspleski [Periodic Discrete Wavelets], Algebra i Analiz, 1996, Vol. 8, Iss. 3, Pp. 151–183. (In Russian)

Login or Create
* Forgot password?